Advances in automated neonatal seizure detection

نویسندگان

  • E. M. Thomas
  • A. Temko
  • G. Lightbody
  • W. P. Marnane
  • G. B. Boylan
چکیده

This chapter highlights the current approaches in automated neonatal seizure detection and in particular focuses on classifier based methods. Automated detection of neonatal seizures has the potential to greatly improve the outcome of patients in the neonatal intensive care unit. The electroencephalogram (EEG) is the only signal on which 100% of electrographic seizures are visible and thus is considered the gold standard for neonatal seizure detection. Although a number of methods and algorithms have been proposed previously to automatically detect neonatal seizures, to date their transition to clinical use has been limited due to poor performances mainly attributed to large inter and intra-patient variability of seizure patterns and the presence of artifacts. Here, a novel detector is proposed based on time-domain, frequency-domain and information theory analysis of the signal combined with pattern recognition using machine learning principles. The proposed methodology is based on a classifier with a large and diverse feature set and includes a postprocessing stage to incorporate contextual information of the signal. It is shown that this methodology achieves high classification accuracy for both classifiers and allows for the use of soft decisions, such as the probability of seizure over time, to be displayed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An evaluation of automated neonatal seizure detection methods.

OBJECTIVE To evaluate 3 published automated algorithms for detecting seizures in neonatal EEG. METHODS One-minute, artifact-free EEG segments consisting of either EEG seizure activity or non-seizure EEG activity were extracted from EEG recordings of 13 neonates. Three published neonatal seizure detection algorithms were tested on each EEG recording. In an attempt to obtain improved detection ...

متن کامل

Phenobarbital reduces EEG amplitude and propagation of neonatal seizures but does not alter performance of automated seizure detection

OBJECTIVE Phenobarbital increases electroclinical uncoupling and our preliminary observations suggest it may also affect electrographic seizure morphology. This may alter the performance of a novel seizure detection algorithm (SDA) developed by our group. The objectives of this study were to compare the morphology of seizures before and after phenobarbital administration in neonates and to dete...

متن کامل

A nonparametric feature for neonatal EEG seizure detection based on a representation of pseudo-periodicity.

Automated methods of neonatal EEG seizure detection attempt to highlight the evolving, stereotypical, pseudo-periodic, nature of EEG seizure while rejecting the nonstationary, modulated, coloured stochastic background in the presence of various EEG artefacts. An important aspect of neonatal seizure detection is, therefore, the accurate representation and detection of pseudo-periodicity in the n...

متن کامل

Validation of an Automated Seizure Detection System on Healthy Babies - Histogram-based Energy Normalization for Montage Mismatch Compensation

Seizures in newborn babies are commonly caused by problems such as lack of oxygen, haemorrhage, meningitis, infection and strokes. The aim of an automated neonatal seizure detection system is to assist clinical staff in a neonatal intensive care unit to interpret the EEG. In this work, the automated neonatal seizure detection system is validated on a set of healthy patients and its performance ...

متن کامل

Clinical implementation of a neonatal seizure detection algorithm

Technologies for automated detection of neonatal seizures are gradually moving towards cot-side implementation. The aim of this paper is to present different ways to visualize the output of a neonatal seizure detection system and analyse their influence on performance in a clinical environment. Three different ways to visualize the detector output are considered: a binary output, a probabilisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010